

Uncertainty in Greenhouse Gas Inventories: Verification, Compliance & Trading Warsaw, September 24-25, 2004

National Greenhouse Gas Inventories: Understanding Uncertainties vs. Potential for Improving Reliability

Wilfried Winiwarter

Outline

- Uncertainty of GHG inventories
 example for Austria
- Sensitivity studies to identify potential improvements: "conclusions"
- Recommendations:
 - Use of uncertainty in compliance evaluation
 - Use of uncertainty in target setting

Uncertainty calculations: Austria

- Input uncertainties:
 - Statistical differences
 - Reported variation
 - Expert judgement
 - Estimation
- 빙 0.05 Treatment of systematic errors
 - Magnitude of unknown systematic errors assumed to be of the same size as errors identified

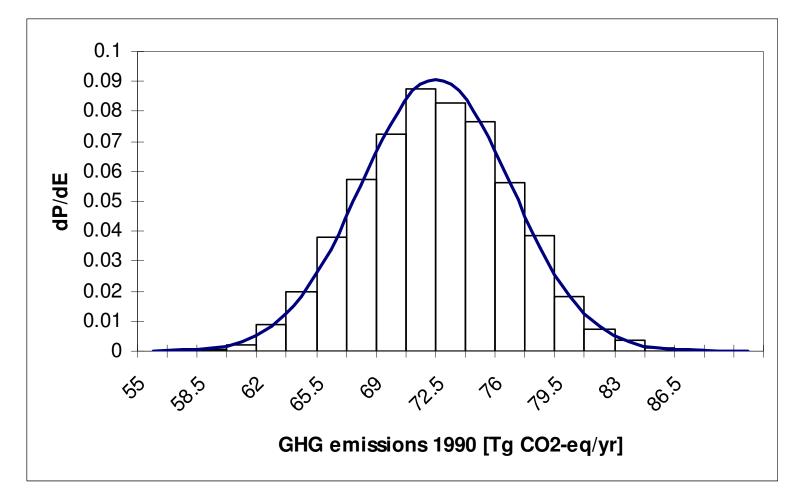
0.1

0.09

0.08 0.07

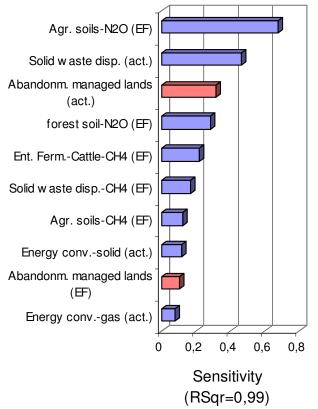
0.06

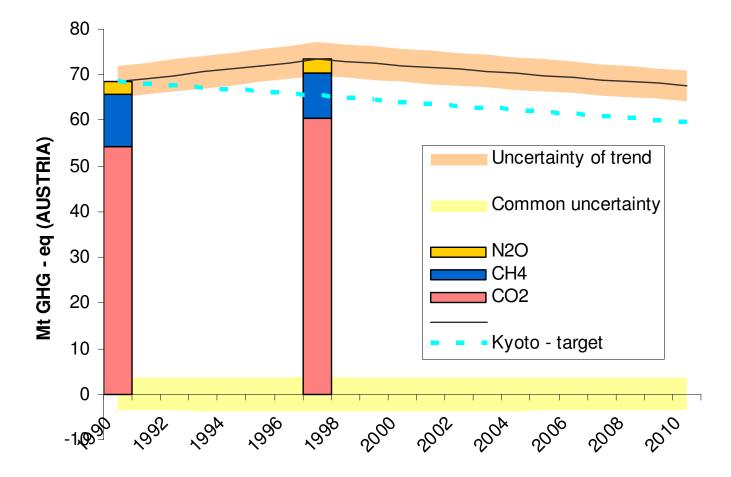
- Monte-Carlo approach
 - impressive
 - easy to operate
 - allows handling of co-variances
 - supports sensitivity analysis


GHG emissions 1990 [Tg CO2-eg/yr]

1[®]

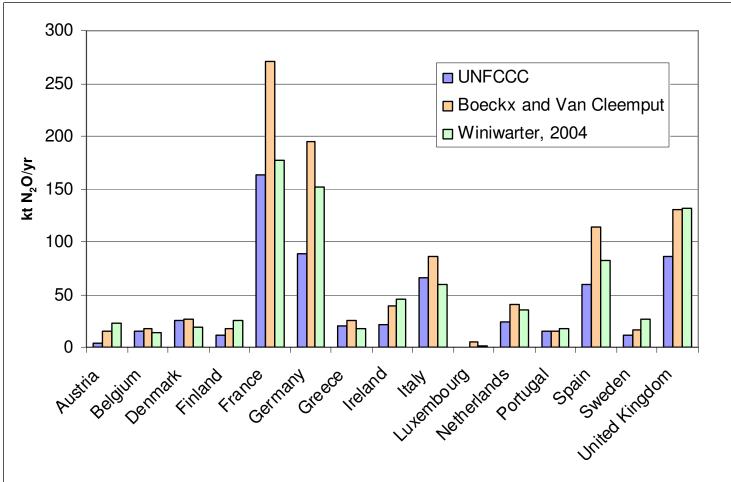
123


Austrian GHG emissions


Sensitivity studies

- Input uncertainties total uncertainty influenced by few inputs requirement to deep investigation limited
- Uncertainty by gas similar variances for CO₂, CH₄, N₂O
 when decreasing variance of any gas
 → little change to overall uncertainty
- when increasing variance of any gas
 - ➔ increase of overall uncertainty
- Robustness to assumptions on probability density function

Emission vs. trend uncertainty


International comparisons

	Austria	Finland	Holland	Norway	UK	USA
CO ₂	2	6	3	3	4	3
CH_4	48	20	17	22	_17	36
N ₂ O	90	40	34	200	230	120
HFCs			41	50	24	25
PFCs			100	40	20	
SF ₆			50	5	13	
Total	10	6	4.4	21	19	13
Total trend (1990-2010	5	5		4	4	

all uncertainties in % (2s), trend in %-points

Soil N₂O

Conclusions (1)

- Improvements possible only in sectors of large uncertainty
- Personal judgement (of experts ...) does have influence on uncertainty estimates
- Scenario analysis and sensitivity runs allow to assess this influence and to understand / evaluate it
- Intuitive aspect gains weight when uncertainties are larger

Conclusions (2)

- Magnitude of uncertainty is similar for industrialized countries
- Differences due to different approaches rather than structural differences
- Uncertainty of trends smaller, but in the same size as national committments
- Meeting or failure to meet the committments will often remain within the bounds of uncertainty
- Whose obligation is it to prove?

What is the Kyoto protocol good for?

- Will NOT halt climate change
- Will NOT lead to decreasing GHG concentrations
- Will NOT lead to stable GHG concentrations

What is the Kyoto protocol good for?

- Will modify increase of GHG concentrations
- Will provide a framework for further steps to be taken

Environmental equity

• Equal/similar treatment of countries

 Co-variance between countries in certain inventory elements will lead to an *uncertainty of country differences* well below trend uncertainty

(uncertainty of target hits two economies the same way)

Co-variance

- Trend calculation
 - Co-variance of most emission factors
- Country comparison
 - Co-variance of many activity inputs (structural differences will remain)

What is uncertainty assessment good for (1)?

 Will NOT contribute to test/verify a country's compliance

Instead:

→ use rigorous guidelines to assess emissions which leave little space for interpretation

Requirements to Guidelines

- Based on scientific agreement (similar to GWP)
- Non-ambiguous
- Allow for inter-country comparisons to homogenize approaches
- To be used for evaluation of national committments

What is uncertainty assessment good for (2)?

- Uncertainty assessment should contribute
 to definition / revision of guidelines
- Uncertainty assessment should contribute to validation/verification and new target setting

Messages

- Uncertainty of GHG emission trends can be as large as reduction committments
- Uncertainty decreases when comparing inventories -- rigorous guidelines at least can provide fair conditions
- Uncertainty becomes important in revising targets for future committment periods